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ABSTRACT 

Long-wave infrared (LWIR) hyperspectral image 
(HSI) data presents an interesting challenge for automatic 
target detection algorithms.  LWIR HSI data is useful for 
both day and night operations, but weak signatures like 
disturbed soil can be problematic for standard matched-
filter techniques (Bowman, et al. 1998).  In this paper, we 
augment the standard matched-filter techniques with 
physics-based information particular to HSI data.  Our 
results show that these physics-based detectors provide 
improved detection performance with quick processing 
times.   

1. INTRODUCTION 

LWIR HSI data provide a useful sensor for the 
Army’s Future Combat Systems.  LWIR HSI data offer 
the capability to conduct image collection in both daylight 
and nighttime operations.  Additionally, LWIR HSI data 
show the capability to detect disturbed soil.  The raw 
imagery, however, may not be the most suitable format 
for the operator.  Instead, Automatic Target Recognition 
(ATR) algorithms need to be employed so the war fighter 
can quickly make sense of the scene and identify possible 
targets or threats.   

Because of this need, a number of ATR algorithms 
have been developed over the years.  In some of the 
earliest work for LWIR HSI data, Bowman, et al. made 
some significant findings about detection in the LWIR 
region (Bowman, et al., 1998).  Their paper divides the 
problem into strong targets (surface mines) and weak 
targets (buried mines).  For surface mines, they found that 
standard ATR algorithms such as spectral matched 
filtering performed quite well. The main difficulty was 
the generation of radiance signatures for LWIR data when 
given an emissivity signature.  Therefore, they 
recommended anomaly detection approaches like RX 
(Reed and Yu, 1990).  For buried mines, they noted that 
matched filter techniques performed poorly because of the 
marginal separation between the disturbed soil signature 
and mixed background pixels.   

A few other researchers have worked on LWIR HSI 
data since Bowman’s paper in 1998.  Winter is probably 
the most notable of these extending his anomaly detection 
method with the N-FINDR algorithm (Winter, 1999) to 

adaptively identify target-like signatures in the imagery 
(Winter, 2004).  Healey has also extended his invariant 
subspace work (Healey and Slater, 1999) to the LWIR 
regions in an attempt to overcome the problems found 
with generation of target radiance signatures.   

For this paper, we focus on detecting weak targets in 
LWIR HSI data.  It is these weak targets that Bowman 
and Lucey argued were problematic for standard 
matched-filter techniques.  To overcome this issue, we 
augment these techniques with physics-based information.  
The key to our approach is the linear mixing model and 
its associated parameters (Hapke, 1993).   

The linear mixing model assumes a pixel is made up 
of endmembers, each with its own abundance.  
Endmembers are the spectra representing the unique 
materials in a given image.  For instance, in an image that 
contains dirt, grass, and road, the endmembers would be 
the corresponding unique spectral signatures for each of 
these materials.  Abundances are the percentage of the 
area of each material within a given pixel.  
Mathematically, these concepts are expressed as 
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where x is an D×1 vector that represents the spectral 
signature of the current pixel, M is the number of 
endmembers within the image, E is an D×M matrix where 
each column represents the ith endmember, a is an M×1 
vector where the ith entry represents the abundance value 
ai, and n is noise typically modeled as a normal 
distribution.   

Nearly all hyperspectral detectors use the linear 
mixing model as the basis for their hypothesis test.  The 
difference we are promoting is in the estimation of the 
linear mixing model parameters – namely, the 
endmembers and their abundances.  Standard techniques 
like AMSD do not model the endmembers in a physical 
fashion (Manolakis, Siracusa, and Shaw, 2001).  Instead, 
the endmembers and abundances are simply vectors and 
magnitudes spanning an abstract mathematical subspace.   

For our physics-based methods, we use algorithms 
that extract physically meaningful endmembers that 
represent materials like grass and sand.  Because we use 
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physically meaningful endmembers, the associated 
abundances also have a physical interpretation.  Namely, 
the abundances measure the amount of endmember 
material within a given pixel.  This approach is 
fundamentally different from the work that Bowman 
originally did with matched-filters.  Taking this physics-
based approach, we will show significantly improved 
detector performance with faster processing times.   

The rest of this paper is as follows.  Section 2 
describes the classical detection algorithms used in our 
analysis.  This includes derivation of each detector and 
how the endmembers and abundances are estimated.  
Section 3 describes the physics-based detectors and how 
they differ specifically from their classical counterparts.  
Section 4 details the experimental results.  Section 5 
concludes our paper and makes recommendations for 
further study.   

2. CLASSICAL DETECTION ALGORITHMS 

This section identifies the classical detection 
algorithms used in our analysis.  This is not meant to be a 
totally inclusive list.  It only identifies the two main types 
of statistical algorithms: structured and unstructured.  The 
unstructured detector is the ACE algorithm which models 
the background as a multivariate normal distribution 
(Kraut, Scharf, and McWhorter, 2001).  The structured 
detector is the AMSD algorithm which models the 
background as an eigenvalue decomposition of the image 
correlation matrix (Manolakis, Siracusa, and Shaw, 2001).  
Both detectors are based entirely on statistical inference 
techniques.   

2.1. Adaptive Coherent Estimate (ACE) 

The ACE detector is one of the most powerful 
detectors available for HSI processing, yet it has one of 
the simplest models. The ACE algorithm uses only a 
statistical distribution (namely the multivariate normal 
distribution) to model the background. The resulting 
hypothesis test is 
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where x is the pixel under test, S are the target 
endmembers, as are the target abundances, and n is a zero-
mean multivariate normal distribution with covariance 
σ2Γ.  Note the interesting scale factor σ2 on the covariance 
matrix.  The scaling term is introduced to make the 
detector scale-invariant even though this assumption (like 
the normality assumption) is not based on empirical data. 
Since the algorithm does not use any background 
endmembers, the sum-to-one and non-negativity 
constraints of (1) cannot be met as they require a 
background subspace. Despite these simplifying 

assumptions, the ACE detector performs well on HSI data 
(Manolakis and Shaw, 2002).   

For this derivation, we follow the work by Kraut and 
Scharf (Kraut and Scharf, 1999) based on the work of 
Kelly (Kelly, 1986).  Besides the information we have in 
(2), we also assume that we have an independent data set 
Y such that 
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Combining (2) and (3) provides the joint likelihood 
equation under the null hypothesis 
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and the joint likelihood equation under the alternate 
hypothesis 
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If we assume that N is very large, the covariance 
estimate from these likelihoods can be simplified to  
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which is a standard assumption made in the literature. 
Note that under this assumption, the covariance under the 
null hypothesis and alternate hypothesis are equal and 
greatly simplify the mathematics.  

We use the likelihood equations in (4) and (5) to find 
the maximum likelihood estimates (MLEs) of the 
unknown abundance and variance terms.  These estimates 
are substituted back into the original likelihood equations.  
The updated likelihoods are taken as a ratio to obtain the 
generalized likelihood ratio test (GLRT) statistic. After 
some algebra and simplification, the ACE detector is 
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2.2. Adaptive Matched Subspace Detector 

The AMSD algorithm is fundamentally different 
from the ACE detector.  This detector uses the linear 
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mixing model directly in its hypothesis modeling both 
target and background endmembers.  The hypothesis used 
to generate this particular detector is 
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where x is the pixel under test, B are the background 
endmembers, S are the target endmembers, ab are the 
background abundances, as are the target abundances, and 
n is a zero-mean multivariate normal distribution with 
covariance σ2I.   

To begin the AMSD derivation, we first calculate the 
likelihood equations for the null hypothesis  
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and the alternate hypothesis 
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Using the above likelihood equations, the maximum 
likelihood estimates of the abundance and variance terms 
can be found as was done with ACE.  These are 
substituted back into the likelihood equations.  Having 
calculated the likelihoods for each hypothesis and using 
some simple algebra, the GLRT takes the ratio of the two 
to calculate the AMSD detection statistic 
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In the original work (Manolakis, Siracusa, and Shaw 
2001), they decided to use a fully statistical approach 
when implementing the AMSD algorithm.  Instead of 
using physically meaningful endmembers to construct the 
background B, they chose to use an eigenvalue 
decomposition of the image correlation matrix.  This is an 
intelligent choice as it provides the minimal least squared 
error between the model and the real image.  
Unfortunately, it has to forego any physical meaning to do 
this.  The endmembers are no longer endmembers that 
identify materials.  They are only vectors that span a 
subspace of the background and thus have no physical 
meaning.  Therefore, their corresponding abundances also 
have no physical meaning and hence cannot conform to 
the sum-to-one and non-negativity constraints.   

3. PHYSICS-BASED DETECTORS 

These detectors use the underlying physics of the 
linear mixing model in their solutions.  The simplest is the 
Fully Constrained Least Squares (FCLS) algorithm which 
estimates the abundances with all their constraints when 
given physically meaningful endmembers.  The next 
algorithm is the AMSD algorithm that uses physically 
meaningful endmembers.  The final detector is a 
culmination of the AMSD and FCLS algorithms.   

3.1. Fully Constrained Least Squares (FCLS) Detector 

The FCLS algorithm directly estimates the 
abundances in (1).  This makes this algorithm more an 
estimator than a detector; however, the abundance 
estimates it produces can be used for detection purposes.  
While other algorithms had been developed that handle 
both the non-negativity and sum-to-one constraints 
(Boardman, 1990), (Settle and Drake, 1993), (Ashton and 
Schaum, 1998), these algorithms tended to be very 
computationally intensive – especially as the number of 
endmembers increased. The FCLS algorithm was 
developed to meet both abundance constraints as well, but 
in a very efficient manner (Heinz and Chang, 2001). 
Additionally, the FCLS method is optimal in terms of 
least squares error.  Because of these reasons, we chose to 
use it in our algorithms.  Unfortunately, FCLS does not 
allow a closed-form mathematical solution due to the non-
negativity constraints. Instead, a numerical solution is 
required.  

To calculate the FCLS solution, we begin with the 
non-negativity constraints. The idea is to minimize the 
least squares error (LSE) by estimating the non-negative 
abundance values. Mathematically this is expressed as 
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where E is the concatenation of the target S and 
background B signatures. Using Lagrange multipliers, a 
new loss function J is developed where 
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a = c, and each member of the unknown constant M×1 
vector c is non-negative to enforce the non-negativity 
constraint. This construction allows the use of Lagrange 
multipliers because the non-negativity constraints have 
been substituted by equality constraints with the unknown 
vector c. To calculate the estimate of a, we take the partial 
derivative of J with respect to a to obtain 
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Equation (20) contains two unknowns: the abundance 
estimates and the Lagrange multipliers. Solving for these 
unknown results in  
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and 
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Iterating (21) and (22) provides the numerical solution for 
the non-negativity constraints.  

To handle the sum-to-one constraints, an easy 
modification of the aforementioned algorithm was 
developed to retain the optimality guaranteed under the 
Kuhn-Tucker conditions (Haskell and Hansen, 1981). In 
the modification, the endmember matrix and pixel 
signatures are extended such that  
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is the new endmember matrix and  
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is the new pixel signature where δ is a small number 
(typically 1×10-5). The δ variable controls how tightly the 
solution will sum to one so that smaller values provide a 
better solution, but may need longer convergence time. 
The new endmember matrix and pixel signature are then 
used in (21) and (22) to obtain an abundance solution that 
meets both the non-negativity and sum-to-one constraints.  

3.2. AMSD/IEA 

This detector is the same detector as AMSD except 
the background endmembers have been extracted using 
the Iterative Error Analysis (IEA) algorithm (Neville, et 
al., 1999).  The IEA algorithm extracts physically 
meaningful endmembers that are based on minimizing the 
least squared error using all abundance constraints.  The 
algorithm begins with the target signature and unmixes 
the image using the FCLS algorithm.  An error image is 
then created between the original image and the unmixed 
image.  The pixel that contains the most error in a least 
squared error sense is then chosen as the next endmember.  
This continues until N number of endmembers is 
extracted.   

The IEA algorithm has a few advantages.  First, the 
algorithm produces physically meaningful endmembers 
that are well matched to the FCLS algorithm.  Second, the 
algorithm provides endmembers that are significantly 

different from the target signature minimizing the chance 
of background signatures “bleeding” into the target 
subspace.  Third, the algorithm runs quickly taking only a 
few minutes to extract 30 endmembers.  Fourth, the IEA 
algorithm was identified as one of the best performing 
endmember extraction techniques (Plaza, et al., 2004).   

3.3. AMSD/IEA/FCLS 

The last detector is one we have presented as the 
hybrid detector (Broadwater, Meth, and Chellappa, 2004).  
This detector is a culmination of FCLS, IEA, and AMSD.  
Besides using IEA to generate background endmembers, 
this detector uses the FCLS abundance estimates directly 
in the detector.  In other AMSD versions, the abundances 
have been calculated using a maximum likelihood 
estimate which may not meet the sum-to-one and non-
negativity constraints identified in (1).  

To utilize the FCLS abundance estimate, we must 
redefine the AMSD detection statistic.  In this derivation, 
we simply replace the MLE abundance estimates a with 
their FCLS counterparts.  If we do this, the new hybrid 
detection statistic is 
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where the abundance estimates are taken from the FCLS 
solution.   

4. LWIR HSI EXPERIMENTS 

This section applies the aforementioned detectors to 
real world collected LWIR HSI data.  The section is 
broken down into two parts.  The first part describes the 
experiments and how they were implemented.  The 
second part contains the experimental results and our 
conclusions.   

4.1. Experimental Design 

The imagery used in this analysis comes from the 
U.S. Army Night Vision Electronic Sensors Division 
(RDECOM CERDEC NVESD).  Over a number of 
experiments they collected LWIR HSI data using the AHI 
sensor (Lucey, et al., 1998).  We are using two images 
taken at a U.S. Army test site.  The images are of desert 
scenes with dry brush and vegetation.  Additionally, the 
images contain dry stream beds with weak disturbed soil 
signatures.  These signatures are older and weaker than 
the target signatures, but nonetheless present an additional 
challenge for the target detection algorithms.   

The targets for the test are disturbed soil signatures.  
We used disturbed soil because it was identified in 
Bowman’s work as some of the hardest targets to detect in 
LWIR HSI data.  We also used it to show that matched-
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filters based on physical information can separate such 
targets from similar background signatures.   

As for the target exemplars used in our detectors, we 
obtained them directly from the imagery.  Ten target 
signatures were pulled from each image.  The mean of 
these ten signatures was used as the target exemplar.  
Because we extracted our target exemplar this way, we 
did not have to worry about atmospheric compensation 
algorithms that could induce artifacts.  While obtaining 
our target signatures this way is not ideal from a real-
world operational perspective, it does provide the most 
unbiased way to analyze the detectors because we know 
the targets signatures are perfectly matched to the 
imagery.   

We were able to locate ten target signatures due to 
the pixel-level ground truth we received.  For each image, 
there is a target mask that identifies which pixels contain 
which types of targets.  This allows us to measure the 
performance of the algorithms on each individual pixel 
and generate statistically meaningful Receiver Operating 
Characteristic (ROC) curves.   

The last and probably most important parameter for 
our experiments is the estimation of the background.  In 
Section 2 and 3, each algorithm uses a different estimate 
of the background.  How those estimates are obtained 
though needs to be described.  For instance, the ACE 
detector uses a covariance matrix to model the 
background, but no indications are given for how to 
obtain that covariance matrix.  This is what the following 
paragraphs will detail for each detector.  In all cases, we 
used the background estimate that provided the best 
performance for each detector as will be explained.   

For ACE, we used both a global and local model of 
the covariance.  The global model estimated the 
covariance matrix of the image using all pixels except 
those that contained targets.  This approach makes sure 
the covariance matrix is a true estimate of the background 
and not tainted by any target signatures.  The local model 
used a sliding window that was 21 pixels squared with the 
middle 11 pixels removed.  We chose this window 
because it was large enough to encompass a target, but 
small enough that it fit in between multiple targets.  
Again, this is an ideal solution as we would not know the 
best size to make this window in real-world operations.   

For AMSD, we used a global correlation matrix as 
defined in the original paper.  As with the global ACE 
detector, we removed all target signatures from the image 
before generating the correlation matrix.  This guaranteed 

that the correlation matrix was a pure estimate of the 
background.  Eigenvalue decomposition was performed 
on the correlation matrix.  The 30 most significant 
eigenvectors were extracted to model the background 
according to the magnitude of their respective 
eigenvalues.  The AMSD algorithm was then run 30 
times.  Each time the number of endmembers was 
increased from a single eigenvector to all 30 eigenvectors.  
Thirty ROC curves were generated and the ROC curve 
with the best performance was identified.  This curve is 
the one shown in the experimental results section.   

For the physics-based detectors, IEA was used to 
model the background.  Thirty endmembers were 
extracted starting with the endmembers that differed 
significantly from the target.  Each of the three physics-
based detectors was run 30 times in the same fashion as 
AMSD.  Again, 30 ROC curves were generated for each 
detector and the ROC curve that provided the best result 
was used.  Table 1 provides a summary of all the 
background models used for each detector.   

Table 1: Background Estimation Details 

Detector Type Background 
Global ACE Statistical Global Covariance 
Local ACE Statistical Local Covariance 

AMSD Statistical Eigenvectors 
FCLS Physics IEA 

AMSD/IEA Physics IEA 
AMSD/IEA/FCLS Physics IEA 

 

4.2. Experimental Results 

Fig. 1 and Fig. 2 show the detection images generated 
by the six algorithms for each LWIR HSI image.  The 
images show the raw detection scores with no threshold 
applied.  White x symbols mark the true location of the 
targets in each set of images.  The images are color coded 
such that red is target-like while blue is background.     

Fig. 3 and Fig. 4 show the ROC curves for the 
detectors applied to each LWIR HSI image.  The dashed 
lines represent the classical detection algorithms.  The 
solid lines represent the physics-based algorithms.  
Because we have pixel level ground truth, the ROC 
curves are calculated for the probability of detection and 
probability of false alarm.  Therefore, the axes are scaled 
from zero to one.  While this information does not 
provide the number of false alarms per unit area, it does 
provide a good way to compare the detectors’ 
performances.   
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From these figures, we first note that the global ACE 
does not perform well.  The detection algorithm uses a 
global covariance matrix to model the background.  While 
the covariance matrix was estimated from background 
pixels only, the background pixels include the dry stream 
beds.  These dry stream beds have signatures very close to 
the desired target signature.  Because of this and the way 
ACE works, the global ACE detector ends up suppressing 
both the background and target signatures.  This is why 
few targets are seen in the detection images and leads to 
the poor ROC performance. 

The other two statistical based methods, local ACE 
and AMSD, perform better than expected.  The AMSD 
algorithm uses the eigenvectors of the background 
correlation matrix to model the background.  In Image 1 
where large areas of undisturbed soil are present, this 
provides enough of a difference to push the eigenvectors 
farther away from the target signatures.  The net effect of 
this is improved performance.  However, in Image 2, the 
image is comprised mostly of dry stream beds which are 
very similar to the target.  These signatures push the 
eigenvectors closer to the target and result in slightly 
worse detection performance. 

Local ACE follows the performance of AMSD.  On 
Image 1, local ACE is easily able to isolate and detect the 
targets in the undisturbed soil areas.  This is expected as 
the local ACE detector only uses neighboring pixels to 
estimate the covariance matrix.  As long as those pixels 

are different from the target, the detector performs well.  
However, in Image 2 and the dry stream beds of Image 1, 
the background pixels are much closer to the target 
signature and performance degrades.   

An interesting side note of the local ACE detector is 
its implicit spatial filtering.  Because the sliding window 
is sized to fit around a target, the ACE detector will not 
detect targets that are larger than the window size.  This is 
the proverbial double edged sword.  If you size the sliding 
window correctly, the local ACE algorithm basically 
performs spectral and spatial filtering simultaneously.  If 
you size the sliding window incorrectly, you run the 
chance of corrupting your background samples with target 
signature and degrading performance significantly.  
Because these sliding windows were sized perfectly to the 
data, the local ACE algorithm performs well and rejects 
the dry stream beds which are found in the physics-based 
detectors. 

The physics-based detectors provide improved 
performance over the classical detectors.  Not only do the 
algorithms identify the targets in the undisturbed soil 
regions, they also are able to isolate targets within the dry 
stream beds.  This gives them a significant advantage over 
the other methods.  The downside is that they also detect 
some of the dry stream beds as well.  However, a spatial 
filter could significantly improve the detectors by 
removing anything that does not match the circular 
structure of the targets.   

Fig 1. (a) Global ACE, (b) Local ACE, (c) AMSD, (d) FCLS, (e) AMSD/IEA, and (f) AMSD/IEA/FCLS detectors 
applied to Image 1.  The white x marks identify the target locations in the imagery.   
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This leads to the interesting conclusion that the 
physically meaningful endmembers are the key to the 
physics-based detectors’ success.  The FCLS based 
detectors have slightly better performance than the other 
two detectors, but this makes sense since the FCLS 
algorithm is used in the IEA endmember extraction 
method.  What is particularly interesting is the 
AMSD/IEA algorithm.  This method does not use the 
sum-to-one or non-negativity abundance constraints, but 
does nearly as well as the algorithms that do.  It is this 
finding that suggests that the endmembers are the critical 
parameters that improve LWIR HSI target detection.   

The final note of this section focuses on processing 
times.  The physics-based methods all provide detection 
scores in less than a minute.  The local ACE detector, 
however, takes well over an hour to process one image.  
This is due to over 100,000 covariance estimates and 
inversions that are needed.  Considering these algorithms 
have not been optimized, this is still a significant increase 
in processing time when using local ACE.  Therefore, the 
physics-based detectors provide improved performance 
with significantly improved processing times over the 
local ACE detector.   

5. SUMMARY 

We presented a physics-based solution to LWIR HSI 
detection problems.  Our analysis concluded that using 
physically-based endmembers leads to improved 

detection performance – especially for weak target 
signatures like disturbed soil.  Additionally, the physics-
based method took less than a minute to process the 
images compared to over an hour for local ACE methods.   

For future work, fundamental research needs to be 
focused on estimating the number of endmembers for a 
particular detector.  We found that the number of 
endmembers used was highly dependent on the type of 
detector.  For example, FCLS used over 20 endmembers 
while the AMSD/IEA algorithm tended to use less than 
ten.  Identifying the correct number of endmembers for a 
particular detector is a necessary step before this 
technology can be applied in real-world applications.   
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